Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(24): 17545-17555, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36441962

RESUMO

Alkaline gases, including NH3, C1-3-amines, C1-3-amides, and C1-3-imines, were measured in situ using a water cluster-CIMS in urban Beijing during the wintertime of 2018, with a campaign average of 2.8 ± 2.0 ppbv, 5.2 ± 4.3, 101.1 ± 94.5, and 5.2 ± 5.4 pptv, respectively. Source apportionment analysis constrained by emission profiles of in-use motor vehicles was performed using a SoFi-PMF software package, and five emission sources were identified as gasoline-powered vehicles (GV), diesel-powered vehicles (DV), septic system emission (SS), soil emission (SE), and combustion-related sources (CS). SS was the dominant NH3 source (60.0%), followed by DV (18.6%), SE (13.1%), CS (4.3%), and GV (4.0%). GV and DV were responsible for 69.9 and 85.2% of C1- and C2-amines emissions, respectively. Most of the C3-amines were emitted from nonmotor vehicular sources (SS = 61.3%; SE = 17.8%; CS = 9.1%). DV accounted for 71.9 and 34.1% of C1- and C2-amides emissions, respectively. CS was mainly comprised of amides and imines, likely originating from the pyrolysis of nitrogen-containing compounds. Our results suggested that motor vehicle exhausts can not only contribute to criteria air pollutants emission but also promote new particle formation, which has not been well recognized and considered in current regulations. Urban residential septic system was the predominant contributor to background NH3. Enhanced NH3 emissions from soil and combustion-related sources were the major cause of PM2.5 buildup during the haze events. Combustion-related sources, together with motor vehicles, were responsible for most of the observed amides and imines and may be of public health concern within the vicinity of these sources.


Assuntos
Poluentes Atmosféricos , Gases , Pequim , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Amidas , Iminas , Aminas , Monitoramento Ambiental , Material Particulado/análise , China
2.
Natl Sci Rev ; 9(10): nwac137, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196118

RESUMO

Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid-base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

3.
Environ Sci Technol ; 56(14): 9936-9946, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749221

RESUMO

Atmospheric new particle formation significantly affects global climate and air quality after newly formed particles grow above ∼50 nm. In polluted urban atmospheres with 1-3 orders of magnitude higher new particle formation rates than those in clean atmospheres, particle growth rates are comparable or even lower for reasons that were previously unclear. Here, we address the slow growth in urban Beijing with advanced measurements of the size-resolved molecular composition of nanoparticles using the thermal desorption chemical ionization mass spectrometer and the gas precursors using the nitrate CI-APi-ToF. A particle growth model combining condensational growth and particle-phase acid-base chemistry was developed to explore the growth mechanisms. The composition of 8-40 nm particles during new particle formation events in urban Beijing is dominated by organics (∼80%) and sulfate (∼13%), and the remainder is from base compounds, nitrate, and chloride. With the increase in particle sizes, the fraction of sulfate decreases, while that of the slow-desorbed organics, organic acids, and nitrate increases. The simulated size-resolved composition and growth rates are consistent with the measured results in most cases, and they both indicate that the condensational growth of organic vapors and H2SO4 is the major growth pathway and the particle-phase acid-base reactions play a minor role. In comparison to the high concentrations of gaseous sulfuric acid and amines that cause high formation rates, the concentration of condensable organic vapors is comparably lower under the high NOx levels, while those of the relatively high-volatility nitrogen-containing oxidation products are higher. The insufficient condensable organic vapors lead to slow growth, which further causes low survival of the newly formed particles in urban environments. Thus, the low growth rates, to some extent, counteract the impact of the high formation rates on air quality and global climate in urban environments.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases , Nitratos , Compostos Orgânicos , Tamanho da Partícula , Material Particulado/análise , Sulfatos
4.
Environ Sci Technol ; 56(11): 6956-6967, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34786936

RESUMO

The COVID-19 outbreak provides a "controlled experiment" to investigate the response of aerosol pollution to the reduction of anthropogenic activities. Here we explore the chemical characteristics, variations, and emission sources of organic aerosol (OA) based on the observation of air pollutants and combination of aerosol mass spectrometer (AMS) and positive matrix factorization (PMF) analysis in Beijing in early 2020. By eliminating the impacts of atmospheric boundary layer and the Spring Festival, we found that the lockdown effectively reduced cooking-related OA (COA) but influenced fossil fuel combustion OA (FFOA) very little. In contrast, both secondary OA (SOA) and O3 formation was enhanced significantly after lockdown: less-oxidized oxygenated OA (LO-OOA, 37% in OA) was probably an aged product from fossil fuel and biomass burning emission with aqueous chemistry being an important formation pathway, while more-oxidized oxygenated OA (MO-OOA, 41% in OA) was affected by regional transport of air pollutants and related with both aqueous and photochemical processes. Combining FFOA and LO-OOA, more than 50% of OA pollution was attributed to combustion activities during the whole observation period. Our findings highlight that fossil fuel/biomass combustion are still the largest sources of OA pollution, and only controlling traffic and cooking emissions cannot efficiently eliminate the heavy air pollution in winter Beijing.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Idoso , Poluentes Atmosféricos/análise , Efeitos Antropogênicos , Pequim , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Combustíveis Fósseis/análise , Humanos , Material Particulado/análise
5.
Environ Sci Technol ; 56(2): 770-778, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34806377

RESUMO

The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Humanos
6.
Environ Sci Technol ; 55(20): 13646-13656, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34585932

RESUMO

Gas-phase oxygenated organic molecules (OOMs) can contribute substantially to the growth of newly formed particles. However, the characteristics of OOMs and their contributions to particle growth rate are not well understood in urban areas, which have complex anthropogenic emissions and atmospheric conditions. We performed long-term measurement of gas-phase OOMs in urban Beijing during 2018-2019 using nitrate-based chemical ionization mass spectrometry. OOM concentrations showed clear seasonal variations, with the highest in the summer and the lowest in the winter. Correspondingly, calculated particle growth rates due to OOM condensation were highest in summer, followed by spring, autumn, and winter. One prominent feature of OOMs in this urban environment was a high fraction (∼75%) of nitrogen-containing OOMs. These nitrogen-containing OOMs contributed only 50-60% of the total growth rate led by OOM condensation, owing to their slightly higher volatility than non-nitrate OOMs. By comparing the calculated condensation growth rates and the observed particle growth rates, we showed that sulfuric acid and its clusters are the main contributors to the growth of sub-3 nm particles, with OOMs significantly promoting the growth of 3-25 nm particles. In wintertime Beijing, however, there are missing contributors to the growth of particles above 3 nm, which remain to be further investigated.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos/análise , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
7.
Environ Sci Technol ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338506

RESUMO

Molecular clustering is the initial step of atmospheric new particle formation (NPF) that generates numerous secondary particles. Using two online mass spectrometers with and without a chemical ionization inlet, we characterized the neutral clusters and the naturally charged ion clusters during NPF periods in urban Beijing. In ion clusters, we observed pure sulfuric acid (SA) clusters, SA-amine clusters, SA-ammonia (NH3) clusters, and SA-amine-NH3 clusters. However, only SA clusters and SA-amine clusters were observed in the neutral form. Meanwhile, oxygenated organic molecule (OOM) clusters charged by a nitrate ion and a bisulfate ion were observed in ion clusters. Acid-base clusters correlate well with the occurrence of sub-3 nm particles, whereas OOM clusters do not. Moreover, with the increasing cluster size, amine fractions in ion acid-base clusters decrease, while NH3 fractions increase. This variation results from the reduced stability differences between SA-amine clusters and SA-NH3 clusters, which is supported by both quantum chemistry calculations and chamber experiments. The lower average number of dimethylamine (DMA) molecules in atmospheric ion clusters than the saturated value from controlled SA-DMA nucleation experiments suggests that there is insufficient DMA in urban Beijing to fully stabilize large SA clusters, and therefore, other basic molecules such as NH3 play an important role.

8.
Sci Total Environ ; 753: 142207, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207435

RESUMO

Secondary aerosol formation in the aging process of primary emission is the main reason for haze pollution in eastern China. Pollution evolution with photochemical age was studied for the first time at a comprehensive field observation station during winter in Beijing. The photochemical age was used as an estimate of the timescale attributed to the aging process and was estimated from the ratio of toluene to benzene in this study. A low photochemical age indicates a fresh emission. The photochemical age of air masses during new particle formation (NPF) days was lower than that on haze days. In general, the strongest NPF events, along with a peak of the formation rate of 1.5 nm (J1.5) and 3 nm particles (J3), were observed when the photochemical age was between 12 and 24 h while rarely took place with photochemical ages less than 12 h. When photochemical age was larger than 48 h, haze occurred and NPF was suppressed. The sources and sinks of nanoparticles had distinct relation with the photochemical age. Our results show that the condensation sink (CS) showed a valley with photochemical ages ranging from 12 to 24 h, while H2SO4 concentration showed no obvious trend with the photochemical age. The high concentrations of precursor vapours within an air mass lead to persistent nucleation with photochemical age ranging from 12 to 48 h in winter. Coincidently, the fast increase of PM2.5 mass was also observed during this range of photochemical age. Noteworthy, CS increased with the photochemical age on NPF days only, which is the likely reason for the observation that the PM2.5 mass increased faster with photochemical age on NPF days compared with other days. The evolution of particles with the photochemical age provides new insights into understanding how particles originating from NPF transform to haze pollution.

9.
Faraday Discuss ; 226: 334-347, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290451

RESUMO

Atmospheric gas-to-particle conversion is a crucial or even dominant contributor to haze formation in Chinese megacities in terms of aerosol number, surface area and mass. Based on our comprehensive observations in Beijing during 15 January 2018-31 March 2019, we are able to show that 80-90% of the aerosol mass (PM2.5) was formed via atmospheric reactions during the haze days and over 65% of the number concentration of haze particles resulted from new particle formation (NPF). Furthermore, the haze formation was faster when the subsequent growth of newly formed particles was enhanced. Our findings suggest that in practice almost all present-day haze episodes originate from NPF, mainly since the direct emission of primary particles in Beijing has considerably decreased during recent years. We also show that reducing the subsequent growth rate of freshly formed particles by a factor of 3-5 would delay the buildup of haze episodes by 1-3 days. Actually, this delay would decrease the length of each haze episode, so that the number of annual haze days could be approximately halved. Such improvement in air quality can be achieved with targeted reduction of gas-phase precursors for NPF, mainly dimethyl amine and ammonia, and further reductions of SO2 emissions. Furthermore, reduction of anthropogenic organic and inorganic precursor emissions would slow down the growth rate of newly-formed particles and consequently reduce the haze formation.

10.
Environ Sci Technol ; 54(14): 8547-8557, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32609510

RESUMO

Understanding the atmospheric new particle formation (NPF) process within the global range is important for revealing the budget of atmospheric aerosols and their impacts. We investigated the seasonal characteristics of NPF in the urban environment of Beijing. Aerosol size distributions down to ∼1 nm and H2SO4 concentration were measured during 2018-2019. The observed formation rate of 1.5 nm particles (J1.5) is significantly higher than those in the clean environment, e.g., Hyytiälä, whereas the growth rate is not significantly different. Both J1.5 and NPF frequency in urban Beijing show a clear seasonal variation with maxima in winter and minima in summer, while the observed growth rates are generally within the same range around the year. We show that ambient temperature is a governing factor driving the seasonal variation of J1.5. In contrast, the condensation sink and the daily maximum H2SO4 concentration show no significant seasonal variation during the NPF periods. In all four seasons, condensation of H2SO4 and (H2SO4)n(amine)n clusters contributes significantly to the growth rates in the sub-3 nm size range, whereas it is less important for the observed growth rates of particles above 3 nm. Therefore, other species are always needed for the growth of larger particles.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
11.
Sci Total Environ ; 721: 137700, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197281

RESUMO

SO2 concentration decreased rapidly in recent years in China due to the implementation of strict control policies by the government. Particulate sulfate (pSO42-) and gaseous H2SO4 (SA) are two major products of SO2 and they play important roles in the haze formation and new particle formation (NPF), respectively. We examined the change in pSO42- and SA concentrations in response to reduced SO2 concentration using long-term measurement data in Beijing. Simulations from the Community Multiscale Air Quality model with a 2-D Volatility Basis Set (CMAQ/2D-VBS) were used for comparison. From 2013 to 2018, SO2 concentration in Beijing decreased by ~81% (from 9.1 ppb to 1.7 ppb). pSO42- concentration in submicrometer particles decreased by ~60% from 2012-2013 (monthly average of ~10 µg·m-3) to 2018-2019 (monthly average of ~4 µg·m-3). Accordingly, the fraction of pSO42- in these particles decreased from 20-30% to <10%. Increased sulfur oxidation ratio was observed both in the measurements and the CMAQ/2D-VBS simulations. Despite the reduction in SO2 concentration, there was no obvious decrease in SA concentration based on data from several measuring periods from 2008 to 2019. This was supported by the increased SA:SO2 ratio with reduced SO2 concentration and condensation sink. NPF frequency in Beijing between 2004 and 2019 remains relatively constant. This constant NPF frequency is consistent with the relatively stable SA concentration in Beijing, while different from some other cities where NPF frequency was reported to decrease with decreased SO2 concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...